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EXPERIMENTAL DETERMINATION OF APPARENT MASS AND

MOMENT OF INERTIA OF A LARGE DISK SUSPENDED AS

A PENDULUM AT DIFFERENT AIR DENSITIES

By Robert S. Dunning

Langley Research Center

SUMMARY

An experiment has been performed to measure the apparent mass of air and added

moment of inertia of the air associated with a freely swinging disk pendulum. These

results were then used to determine the mass coefficient associated with rotation about

an axis of a disk and with translation. The results were found to be substantially in

agreement with Lamb's theoretical values. Error studies were made which indicate

accuracy within 10 percent for the best method tried. A linear increase in added mass

and moment of inertia with increasing air density was experimentally verified from essen-

tially zero air density up to 1 arm (101 325 N/m2).

INTRODUCTION

When an object is set in motion, the surrounding air is also set in motion. There-

fore, the effective mass and inertia of an object are greater in air than in a vacuum.

This phenomenon is generally referred to as apparent mass or inertia and can be impor-

tant for lightweight objects because the added effects of the surrounding air can be of the

same order of magnitude as the structural mass and inertia. There is currently much

interest in lightweight aerodynamic structures; therefore, interest in the determination of

apparent mass and inertia has been renewed. In the past the added effects generally have

been measured on small models (ref. 1) and extrapolated to large scale as required.

Large vacuum spheres are now available which can be used for the measurement of appar-

ent mass and inertia of structures approaching flight-hardware size. The purpose of the

present study was to examine apparent mass and inertia effects for such a structure,

specifically the apparent mass and moment of inertia associated with a large disk sus-

pended as a pendulum at different air densities.
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variation of p2

straight line
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SYMBOLS

with p based on least-squares fit of data to a

radius of gyration, meters

distance from pivot point to center of disk, meters

distance from pivot point to center of aerodynamic pressure, meters

distance from pivot point to center of gravity of structure, meters

distance from pivot point to center of gravity of apparent mass for

basic configuration, meters

mass, kilograms

number of data points

period, seconds

atmospheric pressure, newtons/meter 2

radius of disk, meters

nondimensional coefficient of apparent mass of air due to translation of a

flat disk in a direction normal to a plane surface

length of pendulum extensions, meters

acceleration due to gravity, meters/second 2

total moment of inertia (structural + apparent inertia), kilogram-meter 2

nondimensional coefficient of apparent mass of air due to rotation of a

flat disk about a diameter



S

V

x,y,z

reference area, meters2

velocity, meters/second

dummyvariables representing pertinent parameters in a propagation-
of-error expression

5 deviation from mean

P

angular displacement, radians

air density, kilograms/meter3

standard deviation

Subs cripts:

a apparent

cg center of gravity

the ith measurement of a data point

structural

vac vacuum

0 zero-length configuration

basic pendulum

basic pendulum with extension

basic pendulum with longer extension

Dots over symbols denote differentiation with respect to time.



ANALYSIS

PendulumWith DampingProportional to Velocity Squared

A commonmethodof determining the effective momentof inertia of a body is the
use of anoscillation test. A suitable oscillation test to determine the momentof inertia
of a disk requires that the disk be suspendedin a test chamber so that it canswing as a
simple pendulum. It is, of course, necessaryto maintain a rigid structural shape.

If the motion of the pendulumis undamped,as it wouldbe if the pendulumwere sus-
pendedin a vacuum,andfrictional losses at the support point are small enoughto be
ignored, then the equationof motion for small-amplitude oscillations is

I_ + mg/cg0= 0

The period of oscillation is given by the well-known formula

(1)

P = 27r1[ I (2)
Vmg / cg

In contrast, the damping moment acting on a pendulum oscillating in still air is pro-

portional to the drag (fig. 1) which, in turn, is proportional to the square of the velocity.

1 pV 2,In this case, the drag force is given by the product of the aerodynamic pressure
the surface area of the pendulum on which this pressure acts S, and the drag coefficient

of the pendulum CD. The damping moment is the product of the drag force and the

moment arm. Hence, for small-amplitude oscillations, the equation of motion with drag

included is given by

I'_ + lpVIV ISCD/aero + msglcg_ = 0 (3)

The moment of inertia I includes the structural and apparent moments of inertia. How-

ever, the restoring moment is related to the structural mass ms only. The apparent

mass produces no restoring force since the buoyant force balances the gravity force. The

buoyancy of the air displaced by the volume of the pendulum is assumed to be negligible.

The velocity term involved in equation (3) is given by

V =/aero _

Therefore, equation (3) can be written as

+ lp(/aero)3SCD_l _ [ + msg/cg6 = 0 (4)

This equation differs from the more commonly encountered equation of damped oscilla-

tory motion in which the damping is proportioned to the first power of the velocity.



Equation (4) is a nonlinear, second-order, differential equationwhich does not have
a knownclosed-form solution. However, the behavior of the solution was examined
numerically for a wide range of constantdampingcoefficients. A typical result is shown
in figure 2. After oneor two complete oscillations, the period remained nearly constant,
was independentof the damping,and wasequal to the period which would be predicted for
the undampedsystem if the initial amplitude is small. The same result was obtainedin
the approximate solutions (ref. 2) of equation(4). The results, therefore, indicate that if
dampingis proportional to the square of the velocity, the period is essentially the same
as that for the undampedsituation. Hence,the momentof inertia is given to sufficient
accuracy by

I = p2msg/c_ (5)

4_2

provided that the period is measured after the first few oscillations. The period will,

however, still differ with density because I is a function of the amount of air dragged

with the pendulum.

Because the period is approximately independent of damping, experimental deter-

mination of the apparent moment of inertia and of the apparent mass is relatively simple.

If the experiment is performed in a vacuum facility, the period can be determined as a

function of air density. From oscillation tests made at a high-vacuum condition and at

various degrees of vacuum, the apparent inertia is obtained as a function of air density by

using the equation

I a=I- Iva c = (p2 _ p2 _msg/___cg (6)
vac/ 4_2

The apparent mass, which is also of interest, can be found by using the following

form of the parallel-axis theorem about the point of support:

Ia = (Ia)cg + ma(/cg)2a (7)

In a general case, equation (7) contains three unknowns: ma, (/cg)a,and (Ia)cg. In

order to eliminate the unknown quantities,the experiment can be repeated with the pen-

dulum length extended by some known amount dl, and then d2. Results from these

experiments provide the second and third of three equations in three unknowns, which can

then be solved for m a. Ifthe weight and inertiaof the extensions are neglected, the

equations which result are

(In) 1 = (Ia)cg + ma(/cg)2a (Ta)

5



(In/2(ia)cg+ma Zcg)a+ (Tb)

(_/_-¢,./c_+m._c_l_+_2 (_c_

Note that equation (7) expresses the apparent inertia about a point of support as the sum

of two quantities:

(1) The apparent moment of inertia associated with rotation about the center of

gravity

(2) The apparent moment of inertia associated with rectilinear motion ma(/cg) 2.

From equation (7) it can be shown that

m.- _.-_,E d_' - _ J (s)

1 d2 ' equation (8) reduces to theIf the incremental lengths are chosen so that d _, dl =
simpler form

ma= (Ia_-2(Ia)2 + (Ia)3 (8a)
2d 2

The term /cg and m s of equation (6) will depend to some extent on the weight of the

extensions and their lengths d 1 and d 2 for a general pendulum configuration. How-

ever, m s and (/Cg)s are measurable quantities.

Both Ia and m a are hypothetically linear functions of the air density. If (Ia)cg

and m a exist, the experimental curves as shown in sketch (a) would be expected. The

difference in the slopes of the curves would be related to the apparent mass.

I a

2d extension

1st extension

No extension

P

Sketch (a)



Although the foregoing analysis has beengeneral and applies to anypendulum,it is
now convenientto consider the special caseof a disk pendulum. Equations (7) and (8)
were derived for a general case in which (leg)a, ma, and (Ia)cg are known. The
(lcg)a canbe assumedto be the distancefrom the pivot point to the geometric center
for some simple configurations. A disk with string supports is sucha configuration,
andif the strings are very light, the center of apparent mass is at the geometric center

of the disk, so that (/cg)a = (/cg)s = leg. In such a case, the total moment of inertia may

be written as

I = I s + Ia

Expressing the variables of this equation in terms of the parallel-axis theorem gives

I = _Is)cg + msl2cgl + EKlPr5 + K2Pr312g 1 (9)

where the terms on the right have been chosen by analogy to the inertias of a solid disk

and the constants K 1 and K 2 are left as unknown coefficients determined by the con-

figuration of the apparent air mass (appendix A).

KlPr5 = (Ia)cg (9a)

K2Pr 3 = m a (95)

These assumptions are justifiedifthe experimental results do indeed assume the linear

form shown in sketch (a) since the term on the right in brackets is linear in p. Substi-

tuting I from equation (9)into equation (2)and squaring results in the following equation:

For p = 0,

= -- {_ + 2g1 IK +K2Pr31_gl}p2 47r2 iS)cg mslc + lPr 5
msglcg

2 4_2 [_I _ ms' c ]
and for the initial pendulum length,

p2

(I0)

Since K 1 and

pendulum lengths must be used.

dulum extended by length d is

(11)

4_2 (KlPr 5 K2Pr312cg )
+ msglc---_ +

(12)

K 2 are unknowns, results from two series of oscillations with different

If lcg is the basic length, then the period for the pen-



p2p2(2)vac+ +K2 r3(,c0d
msg(Icg + d) lPr5 +

In slope-intercept form, the periods are given by

where

P_= (P_)vac+A1 p

p2P_= ( 2)vac+A2 p

4_2 FK r 5 K2r31_g ]_ P_-(P_)v_c
AI - m_'egE I + p

(13)

(14)

(15)

(16)

A2= 4_2 [K + K2r3(lcg + d)2] - pmsg(/cg + d) lr5 1)2- (P2)vi_c (17)

Equations (16) and (17) can be used to obtain

msg pcg(A2 - A1)+ A2d ]
(18)

12
K1 = msglc_A1 _ K2 cg

4_2r 5 r 2
(19)

In pendulum oscillation tests, lcg is usually made much greater than r; there-

fore, small errors in K 2 will be amplified in the calculation of K 1 by means of the

,,\(_.g)2 term of equation(19). Also, K 1 and K 2 are found tobethesmalldifferences

of large numbers, which may result in poor accuracy. Values of K 1 are best calculated

from a special experiment in which the disk is oscillated about a diameter. The restoring

moment can be provided by adding a weight inside the disk at a known distance from the

axis of rotation. Under these conditions it can be shown in a manner analogous to the

derivation of equation (19) that

Kl_m0gl0FP2- (;2)vac]
4_2r 5 L

(20)

where m 0 is the concentrated mass used to provide restoring moment to the disk and

10 is the distance of this mass from the center of the disk. This statement means that

8



errors in K2 will not affect the value of K1. If K1 is obtained as indicated, then
K2 canbeobtainedmore easily than in equation (18)by rearranging equation(12)to give

c1K2 = msg P_Iva - K 1 _ (21)

4_2r31cg lcg

For r << leg the value of K 1 will not have an appreciable effect on the vaiue of K 2

computed by using this equation.

Experimental Procedure

The tests for the experimental determination of apparent mass and moment of

inertia of a disk were conducted in a 15-meter-diameter vacuum sphere at the Langley

Research Center at nominal air densities from 0.00154 to 1.225 kg/m3. The corre-

sponding air pressures were from 1 to 760 mm of mercury (1 mm Hg -- 133.3 N/m2). The

basic disk configuration is shown in figure 3. The disk, which had a 0.9525-meter radius,

consisted of a lightweight, balsa-wood frame, both faces of which were covered by sheets

of polyethylene. The disk was supported from the ceiling by means of two inextensible

strings (dacron 20 kg fishing line) clamped at the top of the sphere. Figure 4 is a photo-

graph of the disk as tested in the zero-length configuration and suspended by ball-bearing

supports, which increased the mass somewhat. The restoring mass was located at the

bottom of the disk as indicated. For each test, the disk was displaced approximately 10 °

and permitted to oscillate freely as a simple pendulum.

Early in the experiment, the period was obtained visually by using a manually oper-

ated stop watch; later in the experiment, the timing data were supplemented by results

from an electronic-photocell-actuated timer and counter. The timer was accurate within

0.1 second and the stop watch was inherently accurate to 0.01 second. However, a cer-

tain amount of error was present in the visual timing because the observer viewed the

test from outside the sphere through observation ports, approximately 10 meters from

the disk. For purposes of this experiment, both timer and observer data are taken as

accurate to 0.1 second. Comparison runs using both timer and stop-watch data yielded

no detectable difference.

The pendulum was allowed ten or more cycles for each test, except at the two high-

est air-density values for which the rapid damping forced a reduction to five cycles. Ten

or more tests were conducted at each of the six values of air density selected for testing

and for each pendulum length. The nominal pressures were 1, 21, 179, 375, 540, and

760 mm of mercury. Pressures were recorded before and after each test and all dis-

crepancies were less than 6 mm even at the highest pressures, as ample time was allowed

to attain temperature stability before each series of tests at a given pressure. Air den-

sities were computed from pressure measurements by using the perfect gas law



P
p_--m RT

where R is the universal gas constant and T is the uncontrolled ambient air tempera-

ture. Both p and T were measured at the test conditions. Density measurements

were accurate within about 1 percent, the error being due mainly to changes in air tem-

perature during the course of an experiment. Length measurements were accurate to

0.01 meter. During a given evacuation sequence, string length changes were found to be

less than 0.007 meter. Mass was measured to an accuracy of 0.03 kg.

Statistical Treatment of Data

The time for each series of swings was divided by the number of swings to obtain

the average measured period. Each set of periods (at a given pressure) was then sub-

jected to a computer program for statistical analysis in which the mean, standard devia-

tion, and individual deviations were calculated. The basic equations are given in appen-

dix B. The individual deviations were then compared with the standard deviation and all

data points which showed an individual deviation greater than twice the standard deviation

were rejected. To determine the validity of this data-rejection scheme, the rejection

criterion was tightened to 1.5 times the standard deviation and a second comparison of

the data points was made. Few additional data points were rejected and the result of the

experiment was not seriously affected; therefore, the data probably do represent a true

picture of the mean pendulum periods at the air densities of this investigation.

The surviving period and density data were then adjusted to a best, straight-line

fit, in a least-squares sense (ref. 3), to a plot of period squared against air density. The

periods, taken from the straight line at selected density values, were used in subsequent

calculations of the moment of inertia and apparent mass.

RESULTS AND DISCUSSION

Five pendulum lengths were tested, counting the zero-length pendulum which was

weighted with a point mass at the bottom. A summary of the pertinent results is pre-

sented as table I for two data-rejection criteria, a deviation of twice the standard devia-

tion and of 1.5 times the standard deviation. Figure 5, which shows period squared as a

function of density, includes data points from table I along with the least-squares best-

fit straight lines. Figure 6 shows the total moments of inertia obtained from the periods

of figure 5 (by use of eq. (5)) as a function of air density. Figure 7 shows the moments

of inertia (from eq. (6)) due to the apparent mass only, that is, with the structural inertia

subtracted.

10



The value of K1 as calculated for the zero-length pendulum (eq. (20)) was found

to be

K 1 = 0.3933 + 0.0127

Lamb's theoretical value (ref. 4) is

K 1 = 0.3555

The average value of K 2 as calculated from equation (21) was found to be

K 2 = 2.9269 + 0.1195

Lamb' s value is

K 2 = 2.667

It can be seen that the experimental values are approximately 10 percent higher

than the theoretical values, which is considered good agreement within the experimental

framework.

As a matter of interest, m a was computed by using equation (8). Because three

pendulum lengths are required for use of this equation and because data were actually

taken for four pendulum lengths (excluding the zero-length case), there were four com-

binations available for computing m a. The results of this calculation are shown in

table II for which the air density was taken at 1 arm. The apparent inertias used in

making this calculation are given in table III along with the probable error.

The wide range of the values of m a determined in this manner indicates that equa-

tion (8) is sensitive to error in Ia. Table III shows that errors in I a were as large as

2.12 percent. These errors in Ia resulted in errors as large as 100 percent in the

apparent mass, which would be unacceptable. This sensitivity to In, of course, results

from the fact that equation (8) involves taking small differences of large numbers. The

values of m a calculated from equation (9b) and experimental values of K 2 are also

given at the bottom of table II. The error in m a is much smaller, around 5 percent.

CONCLUDING REMARKS

An experiment has been performed to measure the apparent mass of air and added

moment of inertia of the air associated with a freely swinging disk pendulum. Nondimen-

sional coefficients which determine the apparent inertia about the center of gravity and

the apparent mass in translation, K 1 and K2, respectively, have been determined

experimentally for a large disk oscillating in still air at air densities up to 1 atmosphere.

Experimental values are approximately 10 percent higher than Lamb's theoretical values.

11



The experimental apparent inertia Ia is given by the formula

Ia = KlPr5 + K2Pr312cg

where P is air density, r is the radius of the disk, leg is the distance from the

pivot point to the center of the disk, and

K 1 = 0.3933 _ 0.0127

K 2 = 2.9269 =_0.1195

In tests to determine the apparent mass and inertia of a general configuration for

which the structural center of mass coincides with the center of apparent mass, the body

should be supported from the center of gravity ifpossible. Using this support point will

allow the value of K I to be calculated independently of K 2 and will subject K 1 to

as few uncertainties as possible. However, if conditions are such that the structural

center of mass does not coincide with the center of apparent mass, the general method

can be used. Caution should be exercised in using the general method since small errors

in measuring the moment of inertia can have serious adverse effects on the resultant

apparent mass.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., April 24, 1970.
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APPEND_ A

JUSTIFICATIONOF EQUATION(9)

The momentof inertia of an object about anaxis is given by

12
I = Icg + meg

The momentof inertia aboutthe center of gravity canbe expressedas

(AI)

Icg= mk 2

where k is the radius of gyration and is proportional to r for a disk. Therefore,

equation (AI) can be written as

I = mk 2 + ml2cg (A2)

Because mass is proportional to density and the cube of a linear dimension, equation (A2)

can be expressed as

I = KlPr5 + K2Pr312g (A3)

13



APPEND_ B

STATISTICAL TREATMENT OF DATA

The period data were subjected to two data-rejection tests in which all data points

having a deviation greater than twice the standard deviation and 1.5 times the standard

deviation were rejected. The two data-rejection criteria yielded essentially the same

result. Data were then adjusted in a least-squares best-fit sense to a straight-line plot

of p2 against p. The technique employed was a linear regression on the straight-line

equation

p2 = ap + ;3

The desired values of a and ;3 were obtained by using the equations

and

n n n n

a : (B1)

n (2o .n Pi " P

n n n

n Z
= 2 (B2)

n Pi- P

where n is the number of data points. The slope of the resultant straight line was used

in subsequent calculations. The standard deviation of the variation of period squared with

density was calculated from the sum and difference expression

(_ _.

n Pi - P

(B3)

Inertias, apparent masses, and values of the Lamb constants K 1 and K 2 were

then calculated from the standard propagation-of-error expression for uncorrelated

errors by using equation (37) of reference 3

14



APPENDIX B

where z

d_Oz_2_2

is the parameter of interest.

/az\ 2 2

+ % (B4)

Final results are always presented in terms of the most probable error, under the

assumption that the data are representative of a normal distribution. The most probable

error is that magnitude of deviation for which the probability of being exceeded is one-

half, specifically, the probability is equal to 0.6754 times the standard deviation.

15
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Mass,
kg

TABLE I.- SUMMARY OF EXPERIMENTAL DATA USING TWO DATA-REJECTION CRITERIA

[Disk radius = 0.9525 meter_

m, icg , m

4.42 0.00

4.42 weighted slug

4.42 of mass

4.42 0.850 kg

4.42 0.902 m from

4.42 c.g.

4.21 4.57

4.21 4.57

4.21 4.57

4.21 4.57

4.21 4.57

4.21 4.57

4.21 6.40

4.21 6.40

4.21 6.40

4.21 6.40

4.21 6.40

4.21 6.40

4.21 8.04

4.21 8.04

4.21 8.04

4.21 8.04

4.21 8.04

4.21 8.04

4.21 9.14

4.21 9.14

4.21 9.14

4.21 9.14

4.21 9.14

4.21 9.14

4.21 9.14

4.21 9.14

4.21 9.14

Density, p,

kg/m3

0.00161

.0339

.287

.609

.875

1.24

0.00150

.0349

.287

.618

.886

1.24

0.00166

.0344

.290

.602

.870

1.22

0.00161

.0338

.289

.601

.875

1.24

0.00161

.0339

.287

.291

.609

.614

.874

.882

1.24

2(_ data-rejection criterion

(a)

Mean period,
sec

3.220

3.230

3.297

3.373

3.436

3.517

4,323

4.375

4.690

5.060

5.307

5.582

5.100

5.168

5.524

5.990

6.285

6.691

5.705

5.775

6.208

6.705

7.140

7.594

6.088

6.159

6.640

6.668

7.208

7.195

7.596

7.602

8.O99

Standard deviation,
_ see

0.000

.000

.005

.010

.009

.018

0.005

.005

.000

.000

.010

.016

0.000

.008

.008

.018

.015

.010

0.005

.016

.016

.037

.016

.019

0.008

.008

.016

.020

.018

.018

.044

.016

.015

1.5or data-rejection criterion
(b)

Mean period,
see

3.220

3.230

3.297

3.373

3.440

3.517

4.323

4.375

4.690

5.060

5.307

5.582

5.100

5.165

5.524

5.987

6.290

6.691

5.706

5.774

6.214

6.705

7.140

7.600

6.089

6.159

6.635

6.655

7.208

7.200

7.608

7.602

8.099

Standard deviation,

a, sec

0.000

.000

.005

.010

.000

.018

0.005

.005

.000

.000

.010

.016

0.000

.005

.005

.010

.011

.010

0.005

.012

.011

.037

.016

.000

0.007

.008

.013

.005

.010

.000

.010

.016

.015

aData are rejected if the absolute value of the deviation exceeds two times the standard deviation.

bData are rejected if the absolute value of the deviation exceeds 1.5 times the standard deviation.
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TABLE II.- APPARENT MASS OF 0.9525-METER-RADIUS DISK

AT 1 ATMOSPHERE

[Differentsuspension lengths taken in groups of three_

ma, kg
lcg , m lcg + dl, m lcg + d2, m (eq. (8))

6.40

4.57

4.57

4.57

8.04

6.40

6.40

8.04

9.14

8.04

9.14

9.14

1.1738 + 2.555

4.4407 + 0.9964

3.6535 i 0.4953

2.4824 ± 1.3912

Mean of the experimental values ..... 2.9376 + 1.798 kg

Calculated from equation 9(b) ...... 3.1080 + 0.1425 kg

TABLE III.-APPARENT INERTIA OF 0.9525-METER-RADIUS DISK

AT 1 ATMOSPHERE

Icg,m Ia'kg_m 2 Probable error,percent

4.57

6.40

8.04

9.14

59.356 + 1.256

125.884 + 1.394

210.612 + 2.745

271.096 + 2.531

2.12

1.01

1.30

.93
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Figure 1.- Physical pendulum showing relative ori_tation of principal forces and distances.
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r =0.9525 m

Figure 3.- Photograph of disk in experimental setup. L-69-2068.1
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Figure 4.- Disk in zero-length configuration. L-69-3059 1
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Figure 5.- Period squared as a function of density, data points based on 1.5a rejection criterion,
and least-squares best-fit straight lines.
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Figure 6.- Moment of inertia of structural and apparent mass as a function of air density.
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Figure 7.- Moment of inertia of ap_rent mass as a function of air density.

NASA-Langley, 1970 -- 23 L-7052 25




